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A new least squares algorithm is proposed and investigated for fast frequency and

phase acquisition of sinusoids in the presence of noise. This algorithm is a special case

of more general, adaptive parameter-estimation techniques. The advantages of the

algorithms are their conceptual simplicity, flexibility and applicability to general situa-

tions. For example, the frequency to be acquired can be time varying,, and the noise can

be non-gaussian, non-stationary and colored.

As the proposed algorithm can be made recursive in the number of observations, it

is not necessary to have a priori knowledge of the received signal-to-noise ratio or to

specify the measurement time. This would be required for batch processing techniques,

such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency

estimate on a recursive basis as more and more observations are obtained. When the

algorithm is applied in real time, it has the extra advantage that the observations need i

not be stored. The algorithm also yields a real time confidence measure as to the accuracy |

of the estimator.

I. Introduction

The problem of estimating the parameters of a sinusoidal

signal has received considerable attention in the literature, see

for example Refs. 1-7 and their references. Such a problem

arises in diverse engineering situations such as carrier tracking

for communications systems and the measurement of Doppler

in position location, navigation and radar systems.

A variety of techniques have been proposed in the literature

to solve such problems including, to mention a few, the appli-

1Also with the faculty of the Electrical Engineering Department at
California State University, Long Beach.

cation of the fast Fourier transform (FFT) (as in Refs. 1,2),

one and two dimensional Kalman filters based on a linearized

model (Ref. 5), a modified extended Kalman filter that

results in a phase locked loop (Ref. 6), or a digital phase locked

loop derived on the basis of linear stochastic optimization

(Ref. 7).

The fact that there are so many different techniques to

solve the problem indicates the importance of the problem.

This, however, also implies that there is no single technique

superior to all others in all possible situations and/or with

respect to different criteria such as computational complexity,

statistical efficiency, etc.
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In this article we propose the application of the least

squares parameter estimation technique to the estimation of
an unknown frequency. The least squares algorithm has been

extensively studied in the literature in terms of convergence,

computational requirements, etc. (Refs. 8, 9), and has found

varied applications in a wide variety of communication and

signal processing problems. This is due to the relative simplicity
of the least squares algorithm and its attractive convergence

rates. In Ref. 9 for example, it has been shown that the

algorithm exhibits an initial factorial convergence rate fol-
lowed by exponential convergence. Such a convergence is

very desirable in almost all estimation situations including the
one under consideration.

When the least squares (LS) algorithm is implemented via

the fast algorithm of Ref. 10, the computational requirements
of the algorithm compare favorably to the FFT algorithm.

The least squares algorithm offers, in addition to the above

discussed rapid initial convergence, several other desirable

features. First the least squares algorithm provides final

estimates of frequency, whereas FFT estimation requires use

of a secondary algorithm to interpolate between frequencies.

Secondly, using an exponentially weighted least squares algo-

rithm, it is possible to track a time varying frequency. We
compare the least squares algorithm to the FFT since the latter

is "close" to the optimum in terms of the statistical

efficiency (Ref. 1).

In Section 11 we present the signal model followed by the

least squares algorithm in Section III. Section IV analyzes

the estimation error of the algorithm. In Section V a few simu-

lation examples are presented. The last section of the article

contains some concluding remarks.

II. The Signal Model

Consider the problem of estimating an unknown frequency"

wa from the measurements Yk, zk below

yg = A sin(w dt k+$)+nik

zk -- A cos (wa tk + _) + nqk, k=l,2,...

(1)

Here the sequence _vk, zk} represents the samples of the
in-phase and quadrature components of a received signal

s(t) obtained by demodulating s(t) by a carrier reference

signal r(t) and its 90-deg phase shifted version respectively,

i.e.,

s(t) = A sin (w o t + $o ) + n(t)

r(t) = 2sin(wt+dPc), $ = $o-$c'Wa = w-w o

with nik and nqk denoting the samples of the quadrature com-
ponents of white noise n(t). The algorithm can be easily

extended to the case where n(t) is a colored noise.

With a power series expansion for the sine and cosine func-

tions, the measurement equations can be written in alternative
forms as follows:

Yk = A sin (watk) Cos@+ A cos (watk) sin_b + n/k

zk = A cos (watk) cos@ -A sin (Watk) sinq_ + nqk

or

IA A sin_b 2Ii l A sine A cosq_ wa 2! wa

=

z cos_b -A sine we A cos_ 2- 2! Wa

A sine n_l']

Acos_ 3 +_wa I
3! wa • " "

. A cost n-ll. A sin_b 3 .

• _ Wa "'" (n-l)! wa -J

m

1 1

I
2

tk
]

I

nik+ (2)

I_nqk/

In tile above approximation the terms of the order (watk)nln!
and smaller order have been ignored (assuming here that

wat k < n). With obvious definitions, the measurement equa-
tion can be written in a form "linear in parameters."

Zk = 0'x k + nj, (3)

In the above, the prime (') denotes transpose, Zk = D'k zg],
t t

n k = [nik nqk], Xk denotes the observable state vector [1 tk
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t 2 ... tg -1 ] and 0' is the unknown parameter matrix. A stan-

dard least square algorithm can be applied to estimate the

unknown parameter matrix 0' from the sequence of noisy

observations Zk, k = 1,2 ..... N.

III. Parameter Estimation via Least Squares

The parameter matrix 0' can be estimated by either a
recursive or nonrecursive form. We consider in this article the
nonrecursive form. The estimate of 0 on the basis of measure-

ment Zk, k = 1,2 ..... N, denoted ON, is given by

j=l j=l

(4)

where 0 < X _< 1 is the exponential data weighting factor. One

may refer to Refs. 8 and 11, for example, for an equivalent
recursive update of 0"N- From 0"N, the estimates of A, wa and
_bcan be obtained.

A. Computational Requirements

The algorithm of Eq. (4) requires an inverse of a symmetric

(n X n) matrix once, requiring order n 2 computations. It may

appear that the computation of each x/x_ term requires n 2

computations. However, detailed examination shows that only

2n computations are required. Thus, the total computations

are equal to 6nN + O(n2). In practice, the matrix inverse can

be precomputed, thus reducing the data dependent computa-
tions to only 2nN+ n2/2.

B. Fast Implementation of Least Squares Algorithm

The matrix

N

j=l

in Eq. (4) has a very special structure as can be easily seen by

explicit computation of the term xjx_ of the summand. Thus,

x.x_ =
! !

- 1 t] t? ... §"-' -l

t/./j2 tj 3 tn-lt, n• '' j !

t.n-I t.n ... t? "-2

Each of the matrices xix _ and p-I is a Hankel matrix. That is,
all the elements of each cross-diagonal are the same. The struc-

ture of a Hankel matrix is very similar to that of a Toeplitz

matrix wherein the elements along the various subdiagonals
are equal. The fast algorithm of Ref. 10 for the solution of

Toeplitz system of equations can be slightly modified so as

to become applicable to the present problem. Thus, the com-

putations in Eq. (4) can be made in order n(log2n)2 compu-

tations, resulting in considerable reduction in the require-
ment for large values of n.

If the matrix inverse is precomputed, then with the algorith-

mic properties of Ref. 10, the solution for _N can be obtained

in approximately 6nlog2n operations. In the implementations
above, it is sufficient to store only the first row and column of
P or p-1.

C. Baseband Sampling

In the case of baseband sampling, only the measurements

{Yk} are available and the parameter matrix 0' is of dimension
n × 1. In such an implementation, however, there may result

an ambiguity of n radians in the phase estimate if the sign of
wa is also unknown.

IV. Estimation Error Analysis

Assuming that the model Eq. (3) is exact (the dimension n

of the parameter matrix in Eq. (2) is sufficiently high), then

the substitution of Eq. (3) in Eq. (4) yields,

" )t /Z x,x; x,(x;o+.;)xN-,
1=1 /=1

(5)

A simple manipulation of Eq. (5) yields the estimation error

ON _= O -'ON aS

ON =- xjx; XN -j E xi_ _N-, (6)
,=1 ,=l

As the state vector x/is deterministic, and n/is a zero mean
process, 0N has its mean equal to zero. The error covariance

matrix of 0N can also be evaluated in a straightforward manner.

Post multiplying Eq. (6) by the transpose of 0N, and taking
expected values of both sides,
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)'_t t

E [ONONI = X/X. _N-/
/=1

×
t N N ' Xi_.2(N-J) 1

xjEt.j.;l
/=1 i=1

(7)

Considering the case of _, = 1 and recalling that (nj} is a white

noise sequence,

N _)-1
~ ~t 02

E [0 u ON] = _ XjXj

(8)

E [llnil12] -- E [n/I] +E 1_/1 = o2

A. Frequency Estimation Error

A simple approximate expression can also be obtained for

the frequency estimation error when the amplitude A is known

and uniform sampling is used. The frequency estimate wa can
be obtained as

When the amplitude A is also unknown, it can be replaced by

its estimate given by,

^ It_-ll )2 (_12) 211/2
AN = IroN + I

In the above expression, Aq denotes the (i,/')th element of
"N

the parameter matrix ON . The error variance of these elements

of interest is given by

\/=l

where K approaches a constant with the increase in the num-
bers of observations N.

For relatively small errors, the frequency estimation error

_Va,N = wa - Wa,N has variance of approximately

For the case of uniform sampling tj = �'Is, where Ts is the

sampling period. Substituting for t/and letting T = N Ts denote
the observation period,

02 6 1 1

E[_2] =_ KN(N +l)(2N+l) r 2A 2
$

In terms of the unsampled system, if the additive noise process

has one-sided noise spectral density No, then 02 = 2No/T s.
Thus,

No 6 K

E[_] _ p T a 4 ' r = NT s (9)

where P = A2/2 is the received signal power and K has value

approximately equal to 4 for low values of n. This is the same

mean square error as for Maximum Likelihood estimation
(Ref. 1 ; Ref. 12, Eq. 8.116).

We note here that in the derivation of Eq. (9), the approxi-

mation error in Eq. (3) has been ignored. It is difficult to esti-

mate the error due to such finite approximation. However,

from a few computer simulations, it appears that for n >

waT= (waTs)N, such error is small.

B. Examples of Application to the DSN Receiver

To keep the dimension n of the parameter matrix small,

the following estimation method is proposed. Dividing both

sides of Eq. (9) by W_,max, and substituting T = n/wa,max, one
obtains

E[_] N O Wd,ma x
-6

Wz P n 3
d,max

Selecting a value of 1/36 for the left hand side of the above

equations allows one to express the maximum frequency

uncertainty that can be resolved by the algorithm as a function
of n. Thus

n 3 p

Wa,ma x = 21----__oo

The rationale for selecting the value of 1/36 for E[_v2]/

W2,max is as follows. Since the additive noise has Gaussian dis-
tribution, one may assume that the frequency estimation error
has Gaussian distribution with its standard deviation denoted

by oyva. The above selection thus ensures that 3o_a <

Wcl,max/2.

Example 1. For reception of Voyager 2 signals at DSS 13, a

typical carrier power-to-noise spectral density ratio is 24.4

dB-Hz. Let n = 8, and Wd,ma x = 652 rad/s. After an initial
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estimation period of T = n w_l, max , the receiver NCO fre-
quency is adjusted by wd" Thus, with an initial adjustment

after T = 12.2 ms, the frequency offset is reduced to ff_uwith
a = 108.6 rad/s (17.4 Hz). Application of the algorithm for a

subsequent period of 24.4 ms reduces the standard deviation
to 6 Hz. In this manner, four applications of the algorithm

bring down the standard deviation of the frequency offset to
less than 0.7 Hz in a total time of 183 ms, from an initial

frequency offset of 104 Hz.

Example 2. If the initial uncertainty is only 20 Hz, then

with a lower value of n equal to 5, after an estimation period

of T = 40 ms, Owu = 18.4 rad/s (2.94 Hz). A frequency correc-
tion at the end of this period and an estimation of the residual

frequency offset for a period of 160 ms reduces crf_ to 0.36 Hz
(fd = _vcl/2n)" Thus with n = 5, the frequency uncertainty is

reduced to o_ = 0.36 Hz in a total estimation period of 0.2 s.

In an alternative approach to keep the value of n fixed and

small with an increase in the total observation period, instead

of resetting the frequency reference (making a correction in

the NCO frequency), the time reference is reset to zero. Sub-

sequent observations in Eq. (1) are now with respect to a
different phase reference, say ¢'. The application of the least

squares algorithm to this set of observations then provides an
estimate for C-denoted _. At this stage the observations in the

second T s interval are processed to have a phase reference
and are then combined with the first set of observations.

Equivalently, it is required to post multiply the second sum on

the right hand side of Eq. (4), obtained for the second sub-

interval of T s, by the following matrix

cos (Acb) -sin (A¢I .,, zx¢ = ¢-¢
Lsin (A¢) cos (A¢)A

the unknown frequency. To keep the computational burden of
the simulations to a minimum, the dimension n was restricted

to a small value and the observation period was also restricted
to a small value.

For frequencies much higher than one, the least squares

algorithm, Eq. (4), was slightly modified. Thus, as Wd,ma x

denotes an upper bound on the magnitude of unknown fre-
quency, we define a normalized parameter matrix O-by-0 i,i =

oi'J/w(_-l) " i = 1, n;] = 1,2. Defining a corresponding-"a,max, • • • ,
state vector _k by

f :11 0 ...

x k = Wd,ma x ... X k

0 W n -1
• ' " d,max..]

the measurement Eq. (3) may be rewritten as

z_ = _';k + nk (lO)

and the least squares algorithm can now be applied to estimate
O. The estimates of the elements of 0 are then obtained as

_ = w_;-_) _,J
a ,max

Such a transformation leaves the previous error analysis

invariant. However, for finite dimensional approximation

considered here, this makes the algorithm numerically more

robust. The simulations for wa = 10 and wa = 100 are pre-
cisely the same as in Figs. 1 through 5 with appropriate

changes in scaling and are not presented separately.

and add the result to the corresponding sum for the first

T s interval. The first sum on the right hand side of Eq. (4)is

simply multilied by a factor of 2. This procedure is extended

in an appropriate manner to subsequent intervals, so as to

obtain a final estimate for wa, and ¢ based on the complete
set of observations.

V. Simulations

Figures 1 through 5 present the frequency estimates obtained

by the least squares algorithm. To avoid singularity of the
matrix p-l, it was modified by the addition of a diagonal

matrix el with e = 0.001. For convenience, the unknown fre-

quency wd is taken to be 1 rad/s. From the simulations it is

apparent that the frequency estimate comes close to the true

frequency in a time equal to a fraction of the time period of

In Figs. 1 through 5, ff and _ represent the first and second

row of the parameter matrix respectively. Thus in baseband
sampling, only the ff vector is estimated while in quadrature

sampling, the estimates of both _band _ parameter vectors are

available. From the figures it is apparent that the dimension n

of the state vector _'g in the model Eq. (3) is approximately

equal to wa T where T is the sampling interval. Due to over

parameterization involved in the problem, there is a considerable

amount of flexibility in the estimation of A, wa, dp from the
estimates of the elements of 0. Thus whereas in Figs. 1

through 3, the amplitude A is assumed known, Figs. 4 and 5

involve unknown A. A different order of computation can

provide an estimate of A when baseband sampling is used.

Here, we have reported results only for the frequency esti-

mates; the phase esimates also converge at a fast conver-

gence rate.
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Vl. Comparison with FFT Techniques

An alternative technique for the fast frequency acquisition

is via fast Fourier transform of sampled data. We observe that

for the case of infinite observation time, both procedures are

optimum and thus are equivalent. However, for finite observa-
tion period T, the FFT has the limitation that the frequency

estimates are quantized to intervals of 1/T Hz. In the finite

dimensional approximation of the LS algorithm this is not the

case and sufficiently accurate estimates can be obtained by

choosing n sufficiently large (finer sampling) even for low

values of T.

The price for such an improvement is increased computa-

tional requirements which is of order nlog2n (though higher

than for FFT) if the matrix P is precomputed and is of order
nlogn logn if P must be computed on line. With the applica-

tion of fast algorithms, the storage requirement of P is only

2n (not n2/2).

Also, note that the computational requirements here are

dominantly decided by wa T and not by the number of sam-

ples as is the case with FFT.

It may also be mentioned that with the FFT algorithm

there also exists a finite probability of the occurrence of an

outlier (Ref. 1) and this causes a component of the frequency
estimation error with a uniform probability density function

over the complete frequency range of the FFT algorithm. As

against this, the frequency estimation error with LS algorithm
has a Gaussian distribution.

VII. Conclusion

This article has presented a fast algorithm based on the

least squares parameter estimation technique. In Ref. 9 it is
shown that the least squares algorithm exhibits a convergence

phase wherein the convergence rate is factorial (the estimation

error goes to 0 as l/k! where k is the number of observations)

followed by an exponential convergence rate. Our simulations

also exhibit the same rapid initial convergence rates. Here of

course, the estimation error does not approach zero because of
a finite and low dimensional truncation of the model. From

another viewpoint the algorithm may be perceived as a time

domain dual of the FFT algorithnr. Whereas the FFT algo-

rithm transforms the data into frequency domain for the

estimation/detection purpose, here the estimation is done
directly in the time domain. This latter approach has several

advantages. First by choosing )t < 1, it is possible to track the

time varying frequency by recursive update techniques
(Ref. 8). Moreover unlike the case of the FFT algorithm, the

frequency estimates are not quantized to intervals of 1/T Hz,

which would be large for small observation interval T. The

price for these desirable features is in terms of increased com-

putational requirement which in fast implementation of the

algorithm could be of order nlogn or nlogn logn (depending

upon the specific implementations), where n is approximately

equal to wa T, the product of the frequency uncertainty and
the observation period.
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